スマート工場向け包括的な
テクノロジーソリューション

MES-VTI

MES-X

製造実行システム

望ましい最終製品を生産するためのワークフロー・レシピを管理し、各種生産書類記録、生産工程最適化を行います。

  • 生産管理
  • 資材管理
  • 生産性管理
  • 品質管理
  • トラック&トレース


お問い合わせ

WMS-X

倉庫管理システム

  • 企業の機能の合理化
  • 生産スペース最適化&運用費用最低限
  • リアルタイムの在庫レベル
  • 効果的な労働
  • トレーサビリティ(起源追跡可能)
  • 総合レポート
お問い合わせ
wmsx

スマート工場向け包括的な
テクノロジーソリューション

MES-VTI

MES-X

製造実行システム

望ましい最終製品を生産するためのワークフロー・レシピを管理し、各種生産書類記録、生産工程最適化を行います。

  • 生産管理
  • 資材管理
  • 生産性管理
  • 品質管理
  • トラック&トレース


connect now

WMS-X

倉庫管理システム

  • 企業の機能の合理化
  • 生産スペース最適化&運用費用最低限
  • リアルタイムの在庫レベル
  • 効果的な労働
  • トレーサビリティ(起源追跡可能)
  • 総合レポート
connect now
wmsx

Connect with us
お気軽にご連絡ください

事例紹介

信頼できるパートナーとして、私たちは深く革新的な企業突破を通じてビジネス環境における視野を拡大していきます。

続きを読む

特集

AI・オートメーション インサイト ブログ 製造 製造
製造企業: AI等によるインフラやコロナ対応、特にスマート工場

現在、コロナ渦の7波を乗り越えていることに力を注いでいる同時、円安によるインフラの危機に向き合う製造企業は、コロナ対応と営業維持を同時に実施することは艱難だと思われます。その課題にある鍵はAIなどのような先端技術のようです。とりわけ、スマート工場は、疫病発散防止および営業成長の対策として専門家に提出されます。 1.現状 NHKによると、新型コロナウィルスの第7波では、感染者数が減少しても、重症による死亡者数は前波に比べて90%を増加したそうです。コロナウイルスに馴染んできたが、コロナ対応の対策は一秒たりとも気が緩んではいけないだろう。また、2022年の秋ごろには円安が続く見込みです。このまま円安が続けば、物価が上がり続けるインフラの状態になりかねません。それは製造企業に直間接的に人手不足や原価上昇などの影響を与えます。しかし、歴史を振り返ると、インフラや疫病などを同時に対応する方法はないかもしれません。幸いに、超スマート社会へ進む道では、ビッグデータ、AI, IoTなどの先端技術はその課題の鍵となり、人手最小で営業成長を与える一石二鳥の方法だと思われます。 2.インフラやコロナ対応に向けての5つ技術 2.1. 非接触指紋認証システム 職場や工場などでクラスター発生を防ぐために、物理的な接触を制限することを多くの製造企業が取り組んでいます。代表的な例はコンピュータビジョンによる画像認識や顔認識システムを使用したそうです。コロナ渦以前、出退勤やにゅう出入駐車をIC カードで管理する代わりに、コンピュータが画像を分析して認識することです。打つ退勤を使うとき、作業員は出退勤のための紙を打つことを忘れることがあります。しかし、顔認識システムを使用するなら、出口を出入することで出退勤を同期してはすごく便利です。 応用事例:  我々の顔認識システムであるFaceXは、ベトナムでコロナ状況が深刻してきた時点から導入され、社員たちの出退勤および出退室の時間を記録して管理します。指紋又はICカードを使うことない非接触方法で、コロナを対応する同時に、疑われる者が職場を入り込めることを防止することに貢献します。社員たちからすごく便利で時間がかからないという好評を受けました。また、VTIグループは、バイクのナンバープレートを認識するコンピュータビジョンによるのシステムを開発しました。それは、出入駐車を素早く管理し、盗難を防止することができます。 VTI

AI・オートメーション ブログ 事例 製造
(2022年)製造業向けのコスト削減アイデア:先端技術を活用する

従来、コストを削減することに悩んでいる製造の企業管理者は多いだと思われます。原価を下げるために材料を減らせることや、人件費をカットダウンするための人事削減などの方法を使えば、目の前の利益はまだ見えないが、品質が低くなるだろう。ありふれた方法は同時に品質向上とコスト削減を実施しかねます。ところが、インダストリー4.0に入ると、無理艱難な課題を解決できるそうです。ここにある秘密の鍵はAIを代表とする先端技術です。本記事は製造業でAIを導入する10つのコスト削減アイデアと、それぞれの活用事例を説明します。 1. 論理上のコスト削減方法 以下の方式は多くの人が慣れるかもしれません。 利益 = 売上 ー コスト  営業を維持したければ、売上はコストより大きいと保たなければなりません。この差が大きければ大きいほど、会社を成長させていきます。利益最適化の目的に到達する企業管理者は、売上を向上するかコストを削減するか迷い込んでいます。しかし、数多くの製品市場が成熟し、質高い品物でも売れないという「ものが売れない時代」では、短期に売上を向上することは難しいです。一方、コスト削減方法を選ばれた、「間接費」又は「直接費」を天秤に置かれないといけないです。 1.1. 直接費 直接費は製品の価格に直接影響をもたらす要素で構成されます。それは、次の通りに三つの部分があります: +)直接材料費:原料費、買入部品費など 基本的に見れば、これはカットしにくい費用です。なぜかというと、取引先との契約書で固定された費用だからです。カットすることは取引先との緊密さ次第です。 +)直接労務費:製品・サービスの提供に直接的に関わる社員の給与

自動・自律運転施工システム
AI・オートメーション 製造
AIによって在庫管理業務はどう変わるか

在庫管理とは必要な資材を、必要なときに、必要な量を、必要な場所へ供給できるように、各種品目の在庫を好ましい水準に維持するための諸活動です(JIS Z 8141 生産管理用語)。在庫が見えないことは会社の状態が分からないと同様なので、在庫管理を上手く行わないと商品の価値が低下、お客様からの評価が下がってしまい、利益減少につながります。この重要な企業経営の基幹業務を徹底するためには、AIを活用した在庫管理がオススメ! AI活用在庫管理システムの利点と言えば、下記の3つのメリットが挙げられます。 1. 在庫管理の適正化、柔軟性の向上 AIシステムを導入する以前の在庫管理業務では、人間のスタッフが入力で、膨大な商品・製品の在庫の管理を行っていました。 過去のデータを参照しながら在庫数の確認と発注をしていたが、人間の勘や経験則に限界があるので、予測の失敗や単純な数え間違いなどの人為的ミスは決して避けられないものです。そういうヒューマンエラーは仕入れの過多やそれに伴う値下げなどのロスを起こしたり、1度の発注に数時間かかるという問題に繋がります。 しかし、AIによる在庫管理システムは入出庫時にバーコードなどでシステム入力ができるので、上記の人為的ミスを防ぐことが可能です。 それに加え、入出庫を直ぐにシステム登録するのでリアルタイムで在庫状況を把握できます。それにより、サプライチェーンは即時に対応ができるようになり、サービスにさらなる柔軟性をもたらしています。また、スマートフォンを操作するだけで手軽に在庫管理ができるというAIシステムも開発されました。このシステムの導入で、スマートフォンに搭載されたカメラで商品のバーコードを読み取って、簡単な操作で在庫管理を始めることができるようになります。 2.

特集

AI・オートメーション インサイト ブログ 製造 製造
製造企業: AI等によるインフラやコロナ対応、特にスマート工場

現在、コロナ渦の7波を乗り越えていることに力を注いでいる同時、円安によるインフラの危機に向き合う製造企業は、コロナ対応と営業維持を同時に実施することは艱難だと思われます。その課題にある鍵はAIなどのような先端技術のようです。とりわけ、スマート工場は、疫病発散防止および営業成長の対策として専門家に提出されます。 1.現状 NHKによると、新型コロナウィルスの第7波では、感染者数が減少しても、重症による死亡者数は前波に比べて90%を増加したそうです。コロナウイルスに馴染んできたが、コロナ対応の対策は一秒たりとも気が緩んではいけないだろう。また、2022年の秋ごろには円安が続く見込みです。このまま円安が続けば、物価が上がり続けるインフラの状態になりかねません。それは製造企業に直間接的に人手不足や原価上昇などの影響を与えます。しかし、歴史を振り返ると、インフラや疫病などを同時に対応する方法はないかもしれません。幸いに、超スマート社会へ進む道では、ビッグデータ、AI, IoTなどの先端技術はその課題の鍵となり、人手最小で営業成長を与える一石二鳥の方法だと思われます。 2.インフラやコロナ対応に向けての5つ技術 2.1. 非接触指紋認証システム 職場や工場などでクラスター発生を防ぐために、物理的な接触を制限することを多くの製造企業が取り組んでいます。代表的な例はコンピュータビジョンによる画像認識や顔認識システムを使用したそうです。コロナ渦以前、出退勤やにゅう出入駐車をIC カードで管理する代わりに、コンピュータが画像を分析して認識することです。打つ退勤を使うとき、作業員は出退勤のための紙を打つことを忘れることがあります。しかし、顔認識システムを使用するなら、出口を出入することで出退勤を同期してはすごく便利です。 応用事例:  我々の顔認識システムであるFaceXは、ベトナムでコロナ状況が深刻してきた時点から導入され、社員たちの出退勤および出退室の時間を記録して管理します。指紋又はICカードを使うことない非接触方法で、コロナを対応する同時に、疑われる者が職場を入り込めることを防止することに貢献します。社員たちからすごく便利で時間がかからないという好評を受けました。また、VTIグループは、バイクのナンバープレートを認識するコンピュータビジョンによるのシステムを開発しました。それは、出入駐車を素早く管理し、盗難を防止することができます。 VTI

AI・オートメーション ブログ 事例 製造
(2022年)製造業向けのコスト削減アイデア:先端技術を活用する

従来、コストを削減することに悩んでいる製造の企業管理者は多いだと思われます。原価を下げるために材料を減らせることや、人件費をカットダウンするための人事削減などの方法を使えば、目の前の利益はまだ見えないが、品質が低くなるだろう。ありふれた方法は同時に品質向上とコスト削減を実施しかねます。ところが、インダストリー4.0に入ると、無理艱難な課題を解決できるそうです。ここにある秘密の鍵はAIを代表とする先端技術です。本記事は製造業でAIを導入する10つのコスト削減アイデアと、それぞれの活用事例を説明します。 1. 論理上のコスト削減方法 以下の方式は多くの人が慣れるかもしれません。 利益 = 売上 ー コスト  営業を維持したければ、売上はコストより大きいと保たなければなりません。この差が大きければ大きいほど、会社を成長させていきます。利益最適化の目的に到達する企業管理者は、売上を向上するかコストを削減するか迷い込んでいます。しかし、数多くの製品市場が成熟し、質高い品物でも売れないという「ものが売れない時代」では、短期に売上を向上することは難しいです。一方、コスト削減方法を選ばれた、「間接費」又は「直接費」を天秤に置かれないといけないです。 1.1. 直接費 直接費は製品の価格に直接影響をもたらす要素で構成されます。それは、次の通りに三つの部分があります: +)直接材料費:原料費、買入部品費など 基本的に見れば、これはカットしにくい費用です。なぜかというと、取引先との契約書で固定された費用だからです。カットすることは取引先との緊密さ次第です。 +)直接労務費:製品・サービスの提供に直接的に関わる社員の給与

自動・自律運転施工システム
AI・オートメーション 製造
AIによって在庫管理業務はどう変わるか

在庫管理とは必要な資材を、必要なときに、必要な量を、必要な場所へ供給できるように、各種品目の在庫を好ましい水準に維持するための諸活動です(JIS Z 8141 生産管理用語)。在庫が見えないことは会社の状態が分からないと同様なので、在庫管理を上手く行わないと商品の価値が低下、お客様からの評価が下がってしまい、利益減少につながります。この重要な企業経営の基幹業務を徹底するためには、AIを活用した在庫管理がオススメ! AI活用在庫管理システムの利点と言えば、下記の3つのメリットが挙げられます。 1. 在庫管理の適正化、柔軟性の向上 AIシステムを導入する以前の在庫管理業務では、人間のスタッフが入力で、膨大な商品・製品の在庫の管理を行っていました。 過去のデータを参照しながら在庫数の確認と発注をしていたが、人間の勘や経験則に限界があるので、予測の失敗や単純な数え間違いなどの人為的ミスは決して避けられないものです。そういうヒューマンエラーは仕入れの過多やそれに伴う値下げなどのロスを起こしたり、1度の発注に数時間かかるという問題に繋がります。 しかし、AIによる在庫管理システムは入出庫時にバーコードなどでシステム入力ができるので、上記の人為的ミスを防ぐことが可能です。 それに加え、入出庫を直ぐにシステム登録するのでリアルタイムで在庫状況を把握できます。それにより、サプライチェーンは即時に対応ができるようになり、サービスにさらなる柔軟性をもたらしています。また、スマートフォンを操作するだけで手軽に在庫管理ができるというAIシステムも開発されました。このシステムの導入で、スマートフォンに搭載されたカメラで商品のバーコードを読み取って、簡単な操作で在庫管理を始めることができるようになります。 2.

特集

Explore

AI・オートメーション インサイト ブログ 製造 製造
製造企業: AI等によるインフラやコロナ対応、特にスマート工場

現在、コロナ渦の7波を乗り越えていることに力を注いでいる同時、円安によるインフラの危機に向き合う製造企業は、コロナ対応と営業維持を同時に実施することは艱難だと思われます。その課題にある鍵はAIなどのような先端技術のようです。とりわけ、スマート工場は、疫病発散防止および営業成長の対策として専門家に提出されます。 1.現状 NHKによると、新型コロナウィルスの第7波では、感染者数が減少しても、重症による死亡者数は前波に比べて90%を増加したそうです。コロナウイルスに馴染んできたが、コロナ対応の対策は一秒たりとも気が緩んではいけないだろう。また、2022年の秋ごろには円安が続く見込みです。このまま円安が続けば、物価が上がり続けるインフラの状態になりかねません。それは製造企業に直間接的に人手不足や原価上昇などの影響を与えます。しかし、歴史を振り返ると、インフラや疫病などを同時に対応する方法はないかもしれません。幸いに、超スマート社会へ進む道では、ビッグデータ、AI, IoTなどの先端技術はその課題の鍵となり、人手最小で営業成長を与える一石二鳥の方法だと思われます。 2.インフラやコロナ対応に向けての5つ技術 2.1. 非接触指紋認証システム 職場や工場などでクラスター発生を防ぐために、物理的な接触を制限することを多くの製造企業が取り組んでいます。代表的な例はコンピュータビジョンによる画像認識や顔認識システムを使用したそうです。コロナ渦以前、出退勤やにゅう出入駐車をIC カードで管理する代わりに、コンピュータが画像を分析して認識することです。打つ退勤を使うとき、作業員は出退勤のための紙を打つことを忘れることがあります。しかし、顔認識システムを使用するなら、出口を出入することで出退勤を同期してはすごく便利です。 応用事例:  我々の顔認識システムであるFaceXは、ベトナムでコロナ状況が深刻してきた時点から導入され、社員たちの出退勤および出退室の時間を記録して管理します。指紋又はICカードを使うことない非接触方法で、コロナを対応する同時に、疑われる者が職場を入り込めることを防止することに貢献します。社員たちからすごく便利で時間がかからないという好評を受けました。また、VTIグループは、バイクのナンバープレートを認識するコンピュータビジョンによるのシステムを開発しました。それは、出入駐車を素早く管理し、盗難を防止することができます。 VTI

AI・オートメーション ブログ 事例 製造
(2022年)製造業向けのコスト削減アイデア:先端技術を活用する

従来、コストを削減することに悩んでいる製造の企業管理者は多いだと思われます。原価を下げるために材料を減らせることや、人件費をカットダウンするための人事削減などの方法を使えば、目の前の利益はまだ見えないが、品質が低くなるだろう。ありふれた方法は同時に品質向上とコスト削減を実施しかねます。ところが、インダストリー4.0に入ると、無理艱難な課題を解決できるそうです。ここにある秘密の鍵はAIを代表とする先端技術です。本記事は製造業でAIを導入する10つのコスト削減アイデアと、それぞれの活用事例を説明します。 1. 論理上のコスト削減方法 以下の方式は多くの人が慣れるかもしれません。 利益 = 売上 ー コスト  営業を維持したければ、売上はコストより大きいと保たなければなりません。この差が大きければ大きいほど、会社を成長させていきます。利益最適化の目的に到達する企業管理者は、売上を向上するかコストを削減するか迷い込んでいます。しかし、数多くの製品市場が成熟し、質高い品物でも売れないという「ものが売れない時代」では、短期に売上を向上することは難しいです。一方、コスト削減方法を選ばれた、「間接費」又は「直接費」を天秤に置かれないといけないです。 1.1. 直接費 直接費は製品の価格に直接影響をもたらす要素で構成されます。それは、次の通りに三つの部分があります: +)直接材料費:原料費、買入部品費など 基本的に見れば、これはカットしにくい費用です。なぜかというと、取引先との契約書で固定された費用だからです。カットすることは取引先との緊密さ次第です。 +)直接労務費:製品・サービスの提供に直接的に関わる社員の給与

自動・自律運転施工システム
AI・オートメーション 製造
AIによって在庫管理業務はどう変わるか

在庫管理とは必要な資材を、必要なときに、必要な量を、必要な場所へ供給できるように、各種品目の在庫を好ましい水準に維持するための諸活動です(JIS Z 8141 生産管理用語)。在庫が見えないことは会社の状態が分からないと同様なので、在庫管理を上手く行わないと商品の価値が低下、お客様からの評価が下がってしまい、利益減少につながります。この重要な企業経営の基幹業務を徹底するためには、AIを活用した在庫管理がオススメ! AI活用在庫管理システムの利点と言えば、下記の3つのメリットが挙げられます。 1. 在庫管理の適正化、柔軟性の向上 AIシステムを導入する以前の在庫管理業務では、人間のスタッフが入力で、膨大な商品・製品の在庫の管理を行っていました。 過去のデータを参照しながら在庫数の確認と発注をしていたが、人間の勘や経験則に限界があるので、予測の失敗や単純な数え間違いなどの人為的ミスは決して避けられないものです。そういうヒューマンエラーは仕入れの過多やそれに伴う値下げなどのロスを起こしたり、1度の発注に数時間かかるという問題に繋がります。 しかし、AIによる在庫管理システムは入出庫時にバーコードなどでシステム入力ができるので、上記の人為的ミスを防ぐことが可能です。 それに加え、入出庫を直ぐにシステム登録するのでリアルタイムで在庫状況を把握できます。それにより、サプライチェーンは即時に対応ができるようになり、サービスにさらなる柔軟性をもたらしています。また、スマートフォンを操作するだけで手軽に在庫管理ができるというAIシステムも開発されました。このシステムの導入で、スマートフォンに搭載されたカメラで商品のバーコードを読み取って、簡単な操作で在庫管理を始めることができるようになります。 2.